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1 Let f�r� = r!�r − 1�. Simplify f�r + 1� − f�r� and hence find
2nÐ

r=n+1

r!�r2 + 1�. [5]

2 The roots of the equationx4 − 4x2 + 3x − 2 = 0 are!, ", ' and$; the sum!n + "n + 'n + $n is denoted
by Sn. By using the relationy = x2, or otherwise, show that!2, "2, '2 and$2 are the roots of the
equation

y4 − 8y3 + 12y2 + 7y + 4 = 0. �3�

State the value ofS2 and hence show that

S8 = 8S6 − 12S4 − 72. �3�

3 Prove by mathematical induction that, for every positive integern,

dn

dxn �ex sinx� = �ï2�nex sin�x + 1
4n0�. �7�

4 Show that
dy
dx

= −4
3 at the pointA �1, −2� on the curve with equation

y3 − 3x2y + 2 = 0,

and find the value of
d2y

dx2 at A. [8]

5 Show thatÓ 1

0
xe−x2

dx = 1
2
− 1

2e
. [2]

Let In = Ó 1

0
xne−x2

dx. Show thatI2n+1 = nI2n−1 − 1
2e

for n ≥ 1. [3]

Find the exact value ofI7. [3]

6 The linear transformation T :>4 → >4 is represented by the matrixM, where

M =
�−2 5 3 −1

0 1 −4 −2
6 −14 −13 1
! ! −2! −11!

�

and! is a constant. The null space of T is denoted byK1 when! ≠ 0, and byK2 when! = 0. Find a
basis forK1 and a basis forK2. [8]
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7 Find the value of the constant, such that,xe−x is a particular integral of the differential equation

d2y

dx2 + 5
dy
dx

+ 4y = 6e−x. �4�

Find the solution of the differential equation for whichy = 2 and
dy
dx

= 3 whenx = 0. [6]

8 The curveC has parametric equationsx = 3
2t2, y = t3, for 0≤ t ≤ 2. Find the arc length ofC. [4]

Find the coordinates of the centroid of the region enclosed by C, thex-axis and the linex = 6. [7]

9 The square matrixA has an eigenvalue, with corresponding eigenvectore. The non-singular matrix
M is of the same order asA. Show thatMe is an eigenvector of the matrixB, whereB = MAM−1,
and that, is the corresponding eigenvalue. [3]

Let

A =
`−1 2 1

0 1 4
0 0 2

a
.

Write down the eigenvalues ofA and obtain corresponding eigenvectors. [4]

Given that

M =
`1 0 1

0 1 0
0 0 1

a
,

find the eigenvalues and corresponding eigenvectors ofB. [4]

10 Use the identity 2 sinP cosQ � sin�P + Q� + sin�P − Q� to show that

2 sin1 cos�1 − 1
40� � cos�21 − 3

40� + 1
ï2

. �3�

A curve has polar equationr = 2 sin1 cos�1 − 1
40�, for 0≤ 1 ≤ 3

40. Sketch the curve and state the polar
equation of its line of symmetry, justifying your answer. [3]

Show that the area of the region enclosed by the curve is3
8�0 + 1�. [6]

[Question 11 is printed on the next page.]
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11 Answer onlyone of the following two alternatives.

EITHER

The linel1 passes through the pointA whose position vector is 4i + 7j − k and is parallel to the vector
3i + 2j − k. The linel2 passes through the pointB whose position vector isi + 7j + 11k and is parallel
to the vectori − 6j − 2k. The pointsP on l1 andQ on l2 are such thatPQ is perpendicular to bothl1
andl2. Find the position vectors ofP andQ. [8]

Find the shortest distance between the line throughA andB and the line throughP andQ, giving your
answer correct to 3 significant figures. [6]

OR

Show the cube roots of 1 on an Argand diagram. [1]

Show that the two non-real cube roots can be expressed in the form 7 and72, and find these cube
roots in exact cartesian formx + iy. [3]

Evaluate the determinant ~
1 37 272

372 2 7
27 72 3

~

. �3�

It is given that Ï = �4ï3�
�
cos4

30 + i sin 4
30

� − 4
�
cos11

6 0 + i sin 11
6 0

�
. ExpressÏ in the form

r�cos1 + i sin1�, giving exact values forr and1. [5]

Hence find the cube roots ofÏ in the formr�cos1 + i sin1�. [2]
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